Probes of Cosmology after Planck: Circular Polarization of CMB and Cosmology at Low Frequencies

> Soma De UC Davis

June 2, 2015 <u>sde@ucdavis.edu</u>

Low frequency CMB experiments

- Primordial magnetic field
- Astrophysical objects such as the first stars
- Useful Astrophysical phenomena: Faraday rotation and conversion, explosion of stars.
- Frequencies of interest <30-40 GHz

Basics of Faraday Rotation

The direction of linear polarization vector is rotated as CMB passes through ionized medium permeated by magnetic field. Faraday rotation vs temperature anisotropy due to magnetic field :

CMB temperature anisotropy -> BPMF< few nG sourced

by magnetic energy **quadratic** in field strength.

Faraday rotation is linear in field strength

- Angle of rotation along a line of sight is proportional to the line integral of comoving magnetic field (B(z)=B_{obs}(1+z)²) times square of the observed wavelength
- Symbolically

$$\alpha(\hat{\mathbf{n}}) = \lambda_0^2 \ RM(\hat{\mathbf{n}}) = \frac{3}{16\pi^2 e} \lambda_0^2 \int \dot{\tau} \ \mathbf{B} \cdot d\mathbf{l}$$

 \circ τ is the optical depth, depends on the free electron density of the medium.

CMB B-mode spectra at 30GHz due to Faraday Rotation caused by primordial and Milky way magnetic field

Galactic RM data is from Oppermann et al (2012)

PMF (1 nG) B-mode peak power ≈0.03(μK)².
Galactic (RM ≈30 rad/m²) and at 30GHz givens a rotation angle 3 X10⁻³ rad.
B-mode peak power ≈0.01 (μK)²
PMF is assumed to be scaleinvariant.
Similar shape of B-mode spectra from PMF and Galactic magnetic field.

De, Vachaspati and Pogosian, 2013

Galactic RM detection

Name - freq (GHz)	$f_{ m sky}$	FWHM (arcmin)	$\Delta_P(\mu \text{K-arcmin})$	$(S/N)_{EB}$ (+DL)	$(S/N)_{TB}$ (+DL)	$(S/N)_{BB}$ (+DL)
Planck LFI - 30	0.6	33	240	5.3E-4 (same)	2.2E-3 (same)	2.3E-4 (same)
Planck HFI - 100	0.7	9.7	106	1.4E-3 (same)	7.5E-4 (same)	6E-5 (same)
Polarbear - 90	0.024^{a}	6.7	7.6	1.3E-2 (1.5E-2)	1.6E-3 (2.0E-3)	4.6E-4 (6.0E-4)
QUIET II - 40	0.04^{a}	23	1.7	0.3 (0.8)	0.05~(0.2)	$0.02 \ (0.08)$
CMBPOL - 30	0.6	26	19	1.0 (same)	0.4 (same)	0.05 (same)
CMBPOL - 45	0.7	17	8.25	2.1(2.3)	0.8~(0.9)	0.12 (0.15)
CMBPOL - 70	0.7	11	4.23	2.0(2.6)	0.6~(0.9)	0.08(0.14)
CMBPOL - 100	0.7	8	3.22	1.4(2.0)	0.3 (0.6)	$0.03 \ (0.07)$
Suborbital - 30	0.1	1.3	3	2.0(3.1)	$0.3 \ (0.7)$	0.08(0.2)
Space - 30	0.6	4	1.4	18 (28)	7 (14)	5 (30)
Space - 90	0.7	4	1.4	3.3(6.8)	1.0(2.4)	0.09(0.64)

ABLE I: S/N of the overall detection of the galactic RM spectrum with Planck, Polarbear, QUIET, CMBPOL and ptimistic future sub-orbital and space experiments. Results are presented without and with (+DL) de-lensing by a factor $f_{\rm DL} = 0.01$. (*a* based on 0.1 of RM sky.)

(+DL) ->f_{DL}=0.01

2σ bounds on effective PMF

Name - freq (GHz)	$f_{ m sky} \; (f_{ m sky}^{ m opt})$	FWHM (arcmin)	$\Delta_P(\mu \text{K-arcmin})$	$B_{\rm eff}~(2\sigma,{ m nG})$	+DL (nG)	+DL+DG (nG)
Planck LFI - 30	0.6	33	240	16^b	same	same
Planck HFI - 100	0.7	9.7	106	23	same	same
Polarbear - 90	0.024^{a}	6.7	7.6	3.3	3.0	same
QUIET II - 40	0.04^{a}	23	1.7	0.46	0.26	0.25
CMBPOL - 30	0.6	26	19	0.56	0.55	0.51
CMBPOL - 45	0.7	17	8.25	0.38	0.35	0.29
CMBPOL - 70	0.7	11	4.23	0.39	0.32	0.26
CMBPOL - 100	0.7	8	3.22	0.52	0.4	0.34
Suborbital - 30	0.1	1.3	3	0.09	0.07	0.05
Suborbital - 90	0.1	1.3	3	0.63	0.45	same
Space - 30	0.6(0.2)	4	1.4	0.06	0.04	0.02
Space - 90	0.7(0.4)	4	1.4	0.26	0.15	0.12

$$f_{DG} = 0.1, f_{DL} = 0.01$$

Work in progress

Map space correlation between RM and T_ILC

Circular Polarization

Wikipedia has an animation Beckert et al(2002)

> A linearly polarized wave can be composed of two orthogonal circularly polarized modes shifted in phase. A phase shift would be produced by a plasma in a magnetic field along the propagation direction of the waves (here along the ydirection). The effect of additional phase-shifts on the linear polarization, leading to **Faraday rotation**.

Faraday Conversion A circularly polarized wave can be composed of two orthogonal linearly polarized modes shifted in phase. A phase shift would be produced by a plasma in a magnetic field perpendicular to the propagation direction of the waves (here along the z-direction). Without phase-shift the sum of the two modes would be a purely linearly polarized wave.

Faraday Conversion vs Faraday Rotation

- FC is mainly created by component of magnetic field perpendicular with respect to the line of sight or the direction of photon propagation.
- FR is produced by magnetic field parallel to the line of sight.
- FC is insensitive to e+/e- ratio while FR is not.

Other astrophysical sources of CP

- Quasars
- Blazers
- radio-galaxies
- low FR emission plasma regions filled with Magnetic field and e+/e- or e/p
- CP<0.01LP

Circular polarization of CMB?

- Magnetic field, relativistic electrons due to the process of Faraday conversion creates circular polarization in CMB.
- We don't expect CMB to have circular polarization at the surface of last scattering. Current upper limit on V/T_{CMB} ~10⁻⁴ (Ref: Mainini, 2013) using MIPOL at Testa Grigia observatory at the Italian Alps.
- The Milky way magnetic field is too small to generate any significant effect.
- Explosion of first stars have good prospects of generating conditions for CMB circular polarization. Therefore could CMB circular polarization be a good probe for the unobserved first stars? Could galaxy clusters be a significant source as well?

Circular polarization generation through Faraday Conversion

$$V(\hat{n}) = -2 \int_{r_*}^0 dr \; U(r, ec{x}, \hat{n}) lpha(r, ec{x}, \hat{n}, \hat{b}),$$

alpha is the Faraday conversion rate. Theta_B is the angle between line of sight and magnetic field Epsilon is the Lorentz factor

$$egin{aligned} lpha(z,ec x, \hat n, \hat b) &= lpha_0 \sin(heta_B)^{rac{\gamma+2}{2}}, \ lpha_0 &= C_\gamma rac{e^2}{m_e c} n_{
m rel} \epsilon_{
m min} (B_{
m mag})^{rac{\gamma+2}{2}}
u^{-rac{\gamma+4}{2}}, \end{aligned}$$

De and Tashiro, 2014, Arxiv:1401.1371 or email me at <u>des@phys.ethz.ch</u>

SN of big stars!

$$r_s = 2.3 \text{ pc} \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right)^{\frac{1}{5}} \left(\frac{\rho_b}{10^{-24} {\rm g/cm^3}}\right)^{-\frac{1}{5}} \left(\frac{t_{\rm age}}{100 \text{ yr}}\right)^{\frac{2}{5}},$$

rs is the radius of the shock t_age is time since explosion rho_b is the baryonic mass density of the ambient medium E_SN energy released by the SN explosion

$$\frac{B_{\rm mag}^2}{8\pi}V_{\rm rem} = f_{\rm mag}E_{\rm SN}.$$

Magnetic field

$$f_{
m rel}E_{
m SN} = V_{
m rem}\int_{\epsilon_{
m min}}^{\epsilon_{
m max}} n_0 m_e c^2 \epsilon^{1-\gamma}.$$

Relativistic electrons

Number density per mass bin

Power spectrum of Faraday conversion

FIG. 1: Power spectra of Faraday conversion generated by the First stars at different redshifts. The solid lines correspond to $t_{\text{age}} = 10^4$ years and $\nu = 1$ GHz. The dashed lines correspond to $t_{\text{age}} = 10^5$ years and $\nu = 1$ GHz. Lastly, the dotted lines correspond to $t_{\text{age}} = 10^4$ years and $\nu = 30$ GHz. Here, ν is the frequency of the CMB photons observed today.

Predicted Signal of V

Redshift dependence of the signal

Summary on CP due to First stars

- Lots of room for improvement in magnetic field modeling
- Foregrounds/ FR of incoming signal
- Metal pollution reducing the size of PopIII